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In catalytic cycles of mono-oxygenase heme enzymes, one-
electron reduction of the ferrous oxy complex generates ferric
peroxo (F& —00").t This process is often coupled with protonation
of the distal peroxo oxygen through a distal pocket proton delivery
system connected by a hydrogen bond to the ferrous oxy heme,
resulting in formation of ferric hydroperoxo (fe-OOH)12 The
second proton delivery to the hydroperoxo intermediate either yields
an oxo ferryl porphyrin coupled with a porphyrin radical (compound
1), a putative active form in P450 enzymes, or initiates hydroxylation
of the hememesecarbon in heme oxygenase (HO) without ;
compound | formatioA=3 Due to their very short life time and Figure 1. Cry§tal structures of heme vicinity of oxy (left) and irradiated
instability, characterization of peroxo and hydroperoxo intermediates oxy (right) Mb; Zs~F electron density maps are at the Bvel
of Mb, HO, P450, and peroxidase enzymes is proven difficult at Table 1. Fe Ligand Geometries in P2; Crystals of Sperm Whale
ambient temperatures. This instability problem has been circum- Mb
vented by radiolytic reduction of their respective ferrous oxy forms distance (A) angle (°)
at cryogenic temperaturésThis method not only affords these

. N ) species Fe-O0 0-0 Fe—Prox---Ne Fe-0-0

unstable intermediates but also uncouples the reduction and
. ] . . . ferrous oxy 1.83 1.25 2.08 124
protonation processes; that is, formations of ferric peroxo and ¢ oo oxy 181 124 206 122
hydroperoxo processes in some cases have been successfully ferric peroxo 1.85 1.33 2.09 120

attained. Proton delivery to the distal oxygen of the peroxo group
depends on both temperature and the protein under study. For @From ref 10.
example, ferric peroxo Mb is stable near 100 K, and upon annealing
>170 K, proton delivery takes place to yield ferric hydroperoxo
Mb, while the peroxo group is readily protonated at substantially
lower temperatures for HO<6 K) and P450CAM ¢55 K).45
Despite these accumulating spectroscopic results, only crystal
structures of hydroperoxo chloroperoxidase cryo-reduced by syn-
chrotron radiation have been reported recehtishile that of ferric
peroxo species has not been reported to date. We describe here th
crystal structures of the ferrous oxy and ferric peroxo Mb, the latter
of which has been generated by synchrotron radiation of the oxy
form at 100 K. Optical absorption spectra of the crystals and hybrid
QM/MM calculations have confirmed not only the formation of
the peroxo species but also the integrities of the oxy and peroxo
species during the diffraction data collection.

The crystal structure of the heme vicinity of the oxy Mb is shown
in Figure 1 (left panel). Our initial attempt to collect diffraction
data sets of oxy Mbyo1 A synchrotron radiation at beamline NW12
of Photon Factory (Tsukuba, Japan) through a 0.6 mm aluminum
attenuator fo 1 s per 2 oscillation (total exposure time of 180 s)
resulted in partial generation of ferric peroxo species as judged by
the single-crystal absorption spectid/e have successfully avoided

absorptior? consequently, it can avoid generation of excess
electrons. The optical absorption spectra of the oxy Mb crystal taken
before and after the diffraction data collection affirm that the initial
ferrous oxy state is well maintained during the diffraction data
collection under the experimental conditions (Figure Slhe oxy

Mb structure refined to 1.25 A resolution shows that the boupd O
assumes a geometry summarized in Table 1, and that the imidazole
Side chain of His64 takes multiple conformation as reported in early
high-resolution studies (PDB code 1A6Mponducted using 1 A
synchrotron radiation. In the early work, spectroscopic examination
of the crystal was not apparently conductédeaving some
ambiguity in integrity of the ferrous oxy form. The apparent similar
Fe—0O, geometry (Table 1) might be regarded as an accidental
coincidence because the structures of the ferrous oxy and ferric
peroxo are virtually indistinguishable at the present level of
resolutions as described below.

Irradiation with 1.0 A synchrotron radiation for 1080 s at 100 K
of the oxy crystal after the diffraction data collection converts the
optical spectrum of the oxy form to the one very similar to the
ferric peroxo species (Figure S1). Diffraction data collection of the
irradiated crystal by 0.6 A synchrotron radiation have not altered
Yhe optical absorption spectrum, indicating that the integrity of ferric
peroxo appears to be maintained during the diffraction data
collection. The crystal structure of the heme environment of the
irradiated oxy Mb is shown in Figure 1 (right panel). The structure

synchrotron beam by using 0.6 A synchrotron radiafidhe shorter
wavelength (higher energy) radiation has an advantage of lower

; Johoku University. of the irradiated oxy form is similar to that of the ferrous oxy form
§ The Hebrew University of Jerusalem. including the axial ligand geometries (Table 1). Formation of
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Hiss4 Mb. The ground state electronic structure of oxy Mb is an open-
N N shell singlet in which the two unpairedandf electrons are mainly

oxy Mb (peroxo Mb) \\—NgYm (2.678)
H

1.310 (1.344) N
1.868 (1.90)

distributed on iron and the Onoiety14 a low lying triplet state is

just 3.6 kcal/mol higher (excited states are described in Table S3).
In conclusion, the agreement between experiment and theory

B NPt shows that the peroxo heme complex has been genuinely character-

2038 (2.043) ized in this work for the first time.

S /‘o/ 124° (120°)
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